Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.317
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559270

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

2.
J Mater Chem B ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591323

RESUMO

Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.

3.
Fish Shellfish Immunol ; 149: 109535, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582231

RESUMO

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.

4.
Exp Neurol ; 376: 114773, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599368

RESUMO

BACKGROUND: Arrhythmia is the most common cardiac complication after ischemic stroke. Connexin 40 is the staple component of gap junctions, which influences the propagation of cardiac electrical signals in the sinoatrial node. However, the role of connexin 40 in post-stroke arrhythmia remains unclear. METHODS: In this study, a permanent middle cerebral artery occlusion model was used to simulate the occurrence of an ischemic stroke. Subsequently, an electrocardiogram was utilized to record and assess variations in electrocardiogram measures. In addition, optical tissue clearing and whole-mount immunofluorescence staining were used to confirm the anatomical localization of the sinoatrial node, and the sinoatrial node tissue was collected for RNA sequencing to screen for potential pathological mechanisms. Lastly, the rAAV9-Gja5 virus was injected with ultrasound guidance into the heart to increase Cx40 expression in the sinoatrial node. RESULTS: We demonstrated that the mice suffering from a permanent middle cerebral artery occlusion displayed significant arrhythmia, including atrial fibrillation, premature ventricular contractions, atrioventricular block, and abnormal electrocardiogram parameters. Of note, we observed a decrease in connexin 40 expression within the sinoatrial node after the ischemic stroke via RNA sequencing and western blot. Furthermore, rAAV9-Gja5 treatment ameliorated the occurrence of arrhythmia following stroke. CONCLUSIONS: In conclusion, decreased connexin 40 expression in the sinoatrial node contributed to the ischemic stroke-induced cardiac arrhythmia. Therefore, enhancing connexin 40 expression holds promise as a potential therapeutic approach for ischemic stroke-induced arrhythmia.

5.
Mol Cancer ; 23(1): 77, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627681

RESUMO

Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/efeitos adversos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos
6.
Pharmacol Res ; 203: 107172, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583685

RESUMO

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.

7.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572971

RESUMO

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Assuntos
Fototerapia , Terapia Fototérmica , Hidrogéis/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38656895

RESUMO

Anterior uveitis (AU) is an immune-mediated inflammatory disease that results in iritis, cyclitis, glaucoma, cataracts, and even a loss of vision. The frequent and long-term administration of corticosteroid drugs is limited in the clinic owing to the side effects and patient noncompliance with the drugs. Therefore, specifically delivering drugs to inflammatory anterior segment tissues and reducing the topical application dosage of the drug are still a challenge. Here, we developed dual dexamethasone (Dex) and curcumin (Cur)-loaded reactive oxygen species (ROS)-responsive nanoparticles (CPDC NPs) to treat anterior uveitis. The CPDC NPs demonstrated both anti-inflammatory and antioxidative effects, owing to their therapeutic characteristics of dexamethasone and curcumin, respectively. The CPDC NPs could effectively release dexamethasone and curcumin in the oxidizing physiological environment of the inflammation tissue. The CPDC NPs can effectively internalize by activated macrophage cells, subsequently suppressing the proinflammatory factor expression. Moreover, the CPDC NPs can inhibit ROS and inflammation via nuclear transcription factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway activation. In an endotoxin-induced uveitis rabbit model, the CPDC NPs show a therapeutic effect that is better than that of either free drugs or commercial eye drops. Importantly, the CPDC NPs with a lower dexamethasone dosage could reduce the side effects significantly. Taken together, we believe that the dual-drug-loaded ROS-responsive NPs could effectively target and inhibit inflammation and have the potential for anterior uveitis treatment in clinical practice.

9.
Anesthesiology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537025

RESUMO

BACKGROUND: Although it has been established that elevated blood pressure and its variability worsen outcomes in spontaneous intracerebral hemorrhage, antihypertensives use during the acute phase still lacks robust evidence. A blood pressure-lowering regimen using remifentanil and dexmedetomidine might be a reasonable therapeutic option given their analgesic and anti-sympathetic effects. The objective of this superiority trial was to validate the efficacy and safety of this blood pressure-lowering strategy that uses remifentanil and dexmedetomidine in patients with acute intracerebral hemorrhage. METHODS: In this multicenter, prospective, single-blinded, superiority randomized controlled trial, patients with intracerebral hemorrhage and systolic blood pressure (SBP) ≥150 mmHg were randomly allocated to the intervention group (a preset protocol with a standard guideline management using remifentanil and dexmedetomidine) or the control group (standard guideline-based management) to receive blood pressure-lowering treatment. The primary outcome was the SBP control rate (<140 mmHg) at 1 h posttreatment initiation. Secondary outcomes included blood pressure variability, neurologic function and clinical outcomes. RESULTS: A total of 338 patients were allocated to the intervention (n = 167) or control group (n = 171). The SBP control rate at 1 h posttreatment initiation in the intervention group was higher than that in controls (101/161, 62.7% vs. 66/166, 39.8%, difference 23.2%, 95% CI, 12.4 to 34.1%, P < 0.001). Analysis of secondary outcomes indicated that patients in the intervention group could effectively reduce agitation while achieving lighter sedation, but no improvement in clinical outcomes was observed. Regarding safety, the incidence of bradycardia and respiratory depression was higher in the intervention group. CONCLUSIONS: Among intracerebral hemorrhage patients with a SBP ≥ 150 mmHg, a preset protocol using a remifentanil and dexmedetomidine-based standard guideline management significantly increased the SBP control rate at 1 h posttreatment compared with the standard guideline-based management. (ClinicalTrials.gov number: NCT03207100, Registration date: June 30, 2017).

10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 308-312, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538362

RESUMO

ICU-acquired weakness (ICU-AW) is a common complication in the intensive care unit (ICU). The occurrence of ICU-AW directly leads to prolonged ICU stays for critically ill patients, and in severe cases, it continues to affect their quality of life even after discharge. This article provides a comprehensive review of the research progress on ICU-AW based on domestic and foreign studies, aiming to provide a scientific overview of ICU-AW, including its definition, pathophysiology, diagnosis, screening tools, influencing factors, and potential intervention strategies, so as to promote timely planning and implementation of relevant screening and intervention measures.


Assuntos
Debilidade Muscular , Qualidade de Vida , Humanos , Debilidade Muscular/epidemiologia , Unidades de Terapia Intensiva , Estado Terminal , Alta do Paciente
11.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449005

RESUMO

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Assuntos
NF-kappa B , Periodontite , Humanos , Quercetina/farmacologia , Periodontite/tratamento farmacológico , Flavonoides , Inflamação , Proteínas de Ligação a RNA , Proteínas Reguladoras de Apoptose
12.
J Affect Disord ; 355: 147-156, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518856

RESUMO

BACKGROUND: Multiple observational studies have reported substantial comorbidity between neuropsychiatric disorders and cardiovascular disease (CVD), but the underlying mechanisms remain largely unknown. METHODS: Using GWAS summary datasets of 8 neuropsychiatric disorders and 6 cardiovascular diseases, an integrative analysis incorporating linkage-disequilibrium-score-regression (LDSC), Mendelian randomization (MR), functional mapping and annotation (FUMA), and functional enrichment analysis, was conducted to investigate shared genetic etiology of the brain-heart axis from the whole genome level, single-nucleotide polymorphism (SNP) level, gene level, and biological pathway level. RESULTS: In LDSC analysis, 18 pairwise traits between neuropsychiatric disorders and CVD were identified with significant genetic overlaps, revealing extensive genome-wide genetic correlations. In bidirectional MR analysis, 19 pairwise traits were identified with significant causal relationships. Genetic liabilities to neuropsychiatric disorders, particularly attention-deficit hyperactivity disorder and major depressive disorder, conferred extensive significant causal effects on the risk of CVD, while hypertension seemed to be a risk factor for multiple neuropsychiatric disorders, with no significant heterogeneity or pleiotropy. In FUMA analysis, 13 shared independent significant SNPs and 887 overlapping protein-coding genes were detected between neuropsychiatric disorders and CVD. With GO and KEEG functional enrichment analysis, biological pathways of the brain-heart axis were highly concentrated in neurotransmitter synaptic transmission, lipid metabolism, aldosterone synthesis and secretion, glutathione metabolism, and MAPK signaling pathway. CONCLUSION: Extensive genetic correlations and genetic overlaps between neuropsychiatric disorders and CVD were identified in this study, which might provide some new insights into the brain-heart axis and the therapeutic targets in clinical practice.


Assuntos
Doenças Cardiovasculares , Transtorno Depressivo Maior , Hipertensão , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Transtorno Depressivo Maior/genética , Encéfalo , Causalidade , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Análise da Randomização Mendeliana , Predisposição Genética para Doença
13.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543502

RESUMO

The low-temperature environment significantly inhibits the growth and metabolism of denitrifying bacteria, leading to an excessive concentration of ammonia nitrogen and total nitrogen in sewage treatment plants during the cold season. In this study, an efficient denitrifying strain of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria named HS2 was isolated and screened from industrial sewage of a chemical factory in Inner Mongolia at 8 °C. The strain was confirmed to be Achromobacter spiritinus, a colorless rod-shaped bacterium. When cultured with sodium succinate as the carbon source, a carbon-to-nitrogen ratio of 20-30, a shaking rate of 150-180 r/min, and an initial pH of 6-10, the strain HS2 exhibited excellent nitrogen removal at 8 °C. Through the results of whole-genome sequencing, gene amplification, and gas product detection, the strain HS2 was determined to possess key enzyme genes in both nitrification and denitrification pathways, suggesting a HN-AD pathway of NH4+-N → NH2OH → NO2-N → NO → N2O → N2. At 8 °C, the strain HS2 could completely remove ammonia nitrogen from industrial sewage with an initial concentration of 127.23 mg/L. Microbial species diversity analysis of the final sewage confirmed Achromobacter sp. as the dominant genus, which indicated that the low-temperature denitrifying strain HS2 plays an important role in nitrogen removal in actual low-temperature sewage.

14.
Psychiatry Clin Neurosci ; 78(4): 248-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318694

RESUMO

AIM: This study investigated the impact of an 8-month daily-guided intensive meditation-based intervention (iMI) on persistent hallucinations/delusions and health-related quality of life (QoL) in male inpatients with schizophrenia with treatment-refractory hallucinations and delusions (TRHDs). METHODS: A randomized controlled trial assigned 64 male inpatients with schizophrenia and TRHD equally to an 8-month iMI plus general rehabilitation program (GRP) or GRP alone. Assessments were conducted at baseline and the third and eighth months using the Positive and Negative Syndrome Scale (PANSS), 36-Item Short Form-36 (SF-36), and Five Facet Mindfulness Questionnaire (FFMQ). Primary outcomes measured PANSS reduction rates for total score, positive symptoms, and hallucinations/delusions items. Secondary outcomes assessed PANSS, SF-36, and FFMQ scores for psychotic symptoms, health-related QoL, and mindfulness skills, respectively. RESULTS: In the primary outcome, iMI significantly improved the reduction rates of PANSS total score, positive symptoms, and hallucination/delusion items compared with GRP at both the third and eighth months. Treatment response rates (≥25% reduction) for these measures significantly increased in the iMI group at the eighth month. Concerning secondary outcomes, iMI significantly reduced PANSS total score and hallucination/delusion items, while increasing scores in physical activity and mindfulness skills at both the third and eighth months compared with GRP. These effects were more pronounced with an 8-month intervention compared with a 3-month intervention. CONCLUSIONS: An iMI benefits patients with TRHDs by reducing persistent hallucinations/delusions and enhancing health-related QoL. Longer iMI duration yields superior treatment outcomes.


Assuntos
Meditação , Esquizofrenia , Humanos , Masculino , Esquizofrenia/complicações , Esquizofrenia/terapia , Delusões/terapia , Qualidade de Vida , Pacientes Internados , Alucinações/etiologia , Alucinações/terapia
15.
Front Immunol ; 15: 1363426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404580

RESUMO

In mammals, the transcription factor Pax5 is a key regulator of B cell development and maturation and specifically expressed in naive/mature B cells but repressed upon B cell activation. Despite the long-standing proposal that Pax5 repression is essential for proper B cell activation, the underlying mechanisms remain largely elusive. In this study, we used a teleost model to elucidate the mechanisms governing Pax5 repression during B cell activation. Treatment with lipopolysaccharide (LPS) and chitosan oligosaccharide (COS) significantly enhanced the antibody secreting ability and phagocytic capacity of IgM+ B cells in large yellow croaker (Larimichthys crocea), coinciding with upregulated expression of activation-related genes, such as Bcl6, Blimp1, and sIgM, and downregulated expression of Pax5. Intriguingly, two CpG islands were identified within the promoter region of Pax5. Both CpG islands exhibited hypomethylation in naive/mature B cells, while CpG island1 was specifically transited into hypermethylation upon B cell activation. Furthermore, treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) prevented the hypermethylation of CpG island1, and concomitantly impaired the downregulation of Pax5 and activation of B cells. Finally, through in vitro methylation experiments, we demonstrated that DNA methylation exerts an inhibitory effect on promoter activities of Pax5. Taken together, our findings unveil a novel mechanism underlying Pax5 repression during B cell activation, thus promoting the understanding of B cell activation process.


Assuntos
Metilação de DNA , Peixes , Fator de Transcrição PAX5 , Animais , Linfócitos B/metabolismo , Ilhas de CpG , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , Peixes/genética
16.
J Nanobiotechnology ; 22(1): 59, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347563

RESUMO

BACKGROUND: Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS: Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-ß (TGF-ß) signaling pathway. CONCLUSION: Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.


Assuntos
Compostos de Cálcio , Nanofibras , Silicatos , Tecidos Suporte , Tecidos Suporte/química , Hidrogéis/farmacologia , Hidrogéis/química , 60489 , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Impressão Tridimensional , Osteogênese , Engenharia Tecidual
17.
World Allergy Organ J ; 17(2): 100875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351904

RESUMO

Objective: The influence of maternal smoking around birth (MSAB) on offspring allergic diseases, specifically childhood asthma (CA), allergic rhinitis (AR), allergic conjunctivitis (AC), and atopic dermatitis (AD) remains incompletely understood. We performed a rigorous mendelian randomization (MR) study to obtain the unconfounded association between MSAB and allergic diseases in offspring with and without adjustment for the effect of breastfeeding. Methods: Utilizing publicly available information of MSAB, breastfeeding, CA, AR, AC, and AD from large-scale genome-wide association studies (GWAS), we performed a two-sample mendelian randomization (TSMR) analysis to assess the respective causal relationship of MSAB and breastfeeding to allergic diseases in offspring. To get a reliable conclusion, MR Egger regression, weighted median, and inverse variance weighted (IVW) were employed to estimate the causality, with IVW as the primary analysis. Multivariate MR (MVMR) analysis was used to assess the effect of MSAB on allergic diseases after adjusting for breastfeeding's impact. Sensitivity analysis was conducted using the Cochran Q test, MR-Egger, and leave-one-out approaches to ensure the reliability and stability of results. Results: The TSMR analysis demonstrated MSAB increased the risks of CA (PIVW = 0.013, OR: 1.018, 95%CI: 1.004 to 1.033) and AD (PIVW = 0.006, OR: 8.293, 95%CI: 1.815 to 37.884) in offspring. Conversely, breastfeeding decreased the risk of CA (PIVW <0.001, OR: 0.946, 95%CI: 0.918 to 0.974). MSAB still increased the risks of CA (P = 0.0497, OR: 1.013, 95%CI: 1.000017 to 1.026) and AD (P = 0.003, OR: 13.800, 95%CI: 2.490 to 269.246) after adjusting for breastfeeding. We observed no strong indication of a negative causality between MSAB and AC and AR. Conclusion: Our findings provided robust evidence of the adverse effects of MSAB on offspring. We emphasized the urgency of smoking cessation around birth and the importance of breastfeeding even in smoking mothers.

18.
J Gene Med ; 26(2): e3675, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388205

RESUMO

BACKGROUND: Microvesicles (MVs) play a crucial role in bronchopulmonary dysplasia (BPD). There are many MVs in circulating plasma, and they are in direct contact with lung endothelial cells. However, the molecular mechanism and causative effect of circulating MVs on BPD remain unclear. METHODS: Clinical plasma samples were collected, circulating MVs were isolated, and microRNA (miRNA) sequencing was performed. The BPD model was established, and different MVs were administered. Alveoli and pulmonary vessels were examined by hematoxylin-eosin staining, and body weight and length were measured. In vitro, gene expression was disrupted by miRNA mimics, miRNA inhibitors or plasmid transfection. Cell proliferation and protein expression were detected by cell scratch assay, accurate 5-ethynyl-2-deoxyuridine test, western blotting, or immunofluorescence assay. RESULTS: BPD-derived MVs further aggravated pulmonary vascular simplification, while circulating MVs from control mice mitigated pulmonary vascular simplification. Micro-RNA sequencing and independent sample verification revealed that miR139-3p, but not miR6125 or miR193b-3p, was the most critical effector molecule in MVs. Mechanism studies showed that eukaryotic translation initiation factor 4E binding protein 1 was the target gene for miR139-3p. In addition, we found that supplementation of miR139-3p inhibitor partially alleviated pulmonary vascular simplification. CONCLUSIONS: These results indicate that circulating MVs are involved in forming BPD by carrying miR139-3p molecules and support miR139-3p inhibitors as a potential therapeutic strategy for alleviating pulmonary vascular simplification in BPD.


Assuntos
Displasia Broncopulmonar , MicroRNAs , Animais , Camundongos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Proteínas de Transporte , Células Endoteliais/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo
19.
Behav Brain Res ; 463: 114913, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38367773

RESUMO

To assess the stability of electroencephalographic (EEG) spectral features across overnight polysomnography (PSG) and daytime multiple sleep latency tests (MSLTs) in chronic insomniacs (CIs) and normal controls (NCs). A total of 20 NCs and 22 CIs underwent standard PSG and MSLTs. Spectral analyses were performed on EEG data from PSG and MSLTs and absolute and relative power in central, frontal and occipital channels were obtained for wake (W) and non-rapid eye movement sleep stage 1 and 2 (N1, N2). Intraclass correlation coefficients (ICCs) were used to assess the stability of EEG spectral power across PSG and MSLTs for W, N1 and N2. The absolute power of all frequency bands except delta exhibited high stability across PSG and MSLTs in both NCs and CIs (ICCs ranged from 0.430 to 0.978). Although delta absolute power was stable in NCs during N1 and N2 stages (ICCs ranged from 0.571 to 0.835), it tended to be less stable in CIs during W and sleep stages (ICCs ranged from 0.042 to 0.807). We also observed lower stability of relative power compared to absolute power though the majority of relative power outcomes maintained high stability in both groups (ICCs in relative power ranged from 0.044 to 0.962). Most EEG spectral bandwidths across PSG and MSLT in W, N1 and N2 show high stability in good sleepers and chronic insomniacs. EEG signals from either an overnight PSG or a daytime MSLT may be useful for reliably exploring EEG spectral features during wakefulness or sleep.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Polissonografia , Latência do Sono , Sono , Fases do Sono , Eletroencefalografia
20.
Int J Nanomedicine ; 19: 1509-1538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384321

RESUMO

Lungs experience frequent interactions with the external environment and have an abundant supply of blood; therefore, they are susceptible to invasion by pathogenic microorganisms and tumor cells. However, the limited pharmacokinetics of conventional drugs in the lungs poses a clinical challenge. The emergence of different nano-formulations has been facilitated by advancements in nanotechnology. Inhaled nanomedicines exhibit better targeting and prolonged therapeutic effects. Although nano-formulations have great potential, they still present several unknown risks. Herein, we review the (1) physiological anatomy of the lungs and their biological barriers, (2) pharmacokinetics and toxicology of nanomaterial formulations in the lungs; (3) current nanomaterials that can be applied to the respiratory system and related design strategies, and (4) current applications of inhaled nanomaterials in treating respiratory disorders, vaccine design, and imaging detection based on the characteristics of different nanomaterials. Finally, (5) we analyze and summarize the challenges and prospects of nanomaterials for respiratory disease applications. We believe that nanomaterials, particularly inhaled nano-formulations, have excellent prospects for application in respiratory diseases. However, we emphasize that the simultaneous toxic side effects of biological nanomaterials must be considered during the application of these emerging medicines. This study aims to offer comprehensive guidelines and valuable insights for conducting research on nanomaterials in the domain of the respiratory system.


Assuntos
Nanoestruturas , Doenças Respiratórias , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Pulmão , Doenças Respiratórias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...